REPORT DOCUMENTATION PAGE

Pubnc reporting burden tor this callection of .atormation s esumated to average 1 hour per response. inclucing the bvme tor revie
data needed. and cr mpleting and reviewng this collecton of information. Send comments regarding this durden estmate or an
this bur ten 1o Department of Defense, Washington Headquanars Services. Directorate for information Operatons and Reports |
3302 Raspondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty !
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

AFRL-SR-BL-TR-00-

WCaYe 2

wung the

4 zurrently

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
9/1/00 Final .

3. DATES COVERED (From - To)
6/1/95-5/31/98

4. TITLE AND SUBTITLE
Research into Development of Executable Reference
Architectures for Avionics Systems

5a. CONTRACT NUMBER
F49620-95-1-0378

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David C, Lutkham

5d. PROJECT NUMBER

Se. TASK MUMBER

5f. WORK UNIT NUMBER

- 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Office of Sponsored Research
Stanford University
Stanford, CA 94305

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NI
110 Duncan Ave, Room Bl1l5

Bolling AFB, DC 20332

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

f 20001127 025

This project contributed several stufdies and publications on architectures, and avionics
architectures, some incollaboration with TRW, Northrop and Lockheed. The references in this
and annual reports document this work. This final report presents a summary of a graphics
oriented tool called Raparch for developing architecture standards. It has capabilities to design an
architecture graphically, input Rapide text to permit an executable form of the architecture for
simulation, and planned capaiblities to translate the architecture into other standards languages,
including UML and ACME. Rapide and Raparch demos can be invoked on the Rapide Website

at Stanford.

15. SUBJECT TERMS
Software design

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
Unclassified OF ABSTRACT
a. REPORT b. ABSTRACT ¢. THIS PAGE

Unclassified |{Unclassified Unclassified UL

18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF PAGES David Luckham
18 19b. TELEPHONE NUMBER (inciude area

%) g5 723 1242

Standard Form 298 (Rev. 8-98)
Prescribed by ANS! Std. 239.18

Evolutionary Development of Complex Systems
using Rapide: Transaction Processing Case
Study, Fundamental Comcepts, a.k.a Tools
Introduction

Introduction

There are several tools to assist programmers who want to develop Rapide models of systems. The tools
include:

® an architecture-based editor for defining system models,

® a compiler for producing executables from the system models,

® a constraint checking runtime system that is used by an executable to produce a history of the
execution,

® a graphical browser for viewing histories, and

® an animation facility providing another view of histories.

This series of documents present an evolutionary, example-driven introduction to these tools. By
evolutionary we mean the examples begin with very simple models and progress through increasingly
complex models.

All of the models are taken from Dr. Kenney’s Ph.D. dissertation on transaction processing. The first
models present fundamental concepts of transaction processing. Successive models present the
properties of atomicity, isolation and durability. The models conclude with advanced features of
security, distribution and performance.

Background

Transaction processing (TP) involves multiple application programs sharing several resources where the
application programs make requests of the resources and receive results back. This is a specialization of
a client server architecture, where clients make requests of servers. However, TP system architectures
have additional properties that distinguish them from client server system architectures. For example,
client server architectures do not traditionally have ‘‘transactions,”” groups of requests (and there
associated processing) that behave atomically. However, it is required for TP systems to have atomic
transactions.

A exempliary TP system architecture contains a single application program that communicates with a set
of resources. A "boxes and arrows" depiction of such an architecture is given in Figure 1.

I W W 3

Resources
(RMs)

Figure 1: A TP System Architecture.

Figure 1 shows a system consisting of an application program component (at the top) and several (three)
resource components (at the bottom). The arrows connecting the components depict that application
program may exchange communication with each of the resources, while the resources cannot
communicate with each other directly. '

We will use the Rapide tools to produce evolutionary prototype models of TP. However, to do so we
must first install the tools so that you can use them.

Installing Rapide Tools

L.

Download the appropriate binary file from ftp://pavg.stanford.edu/pub/Rapide-1.0/toolset/. Note:
the files are of the form rapide.type.buildnum.tar.gz, where type is one of:

O SUNOS - for Sun OS version 4.1,

O SOLARIS - for Sun OS version 5.5 and 5.6 (aka Solaris 2.5 & 2.6), or

O LINUX - for Linux version 2.0.
Generally, the greater the build number num the "better” the release. Also, note there are several
bug fixes available in the debug subdirectory.
Find someplace (preferably /usr) with approximately SOMB of free disk space and extract the tar
files:

O gzip -dc file | tar xf -
(where file is the name of the file you downloaded). You should either install the distribution in
/usr/rapide, make a symbolic link from /usr/rapide to the distribution, or set the environment
variable RAPIDEHOME to the installation directory.

O In-s installation_directory/rapide /usr/rapide

3. Note: the following instructions assume you have set the RAPIDEHOME environment variable to
the installation directory. If you haven’t, then either replace the "SRAPIDEHOME" to the ‘
installation_directory/rapide in the rest of this file or (recommended) set RAPIDEHOME to
installation_directory/rapide.

O setenv RAPIDEHOME installation_directory/rapide

4. Modify your PATH environment variable to include the rapide "bin" directory: -
O setenv PATH ${RAPIDEHOME }/bin:${PATH}

5. Optionally, modify your MANPATH environment variable to include the rapide "man" directory:
O setenv. MANPATH 3{RAPIDEHOME}/man:${MANPATH}

6. 'Additionally, the installation and execution of the Rapide toolset require two environment variable
to be properly set. Your path must include a directory that contains the ‘make’ program, and your
shared library search path must include a directory that contains the xview library libxview.so.3.

O setenv PATH directory_with_make:${PATH}
O setenv LD_LIBRARY_PATH directory_with_libxview:${ LD_LIBRARY_PATH}

7. Lastly, the Rapide predefined library must be recompiled and a few C++ libraries must be
freshened. Please execute the program: '

O $RAPIDEHOME/bin/installation_setup
8. If you have any problems, please refer to the Rapide FAQ at:
O http://pavg.stanford.edu/rapide/FAQ.html

Environment Variables

As discussed in the previous section, the Rapide tools generally assumes the Rapide distribution is
installed under the /usr/rapide directory and that /usr/rapide/bin is included in your path. If you installed
the installation in another location, you should set the environment variable RAPIDEHOME to that
location and include SRAPIDEHOME/bin in your PATH environment variable. Also, you should
appropriately set MANPATH and LD_LIBRARY_PATH.

System Architecture

Normally, the first step in building a prototype of a system is to develop an architecture. The Rapide
toolsuite provides several ways to do build system architectures, and perhaps the best first step is to use
the tool raparch.

Raparch -- The Rapide Architecture Editor

Raparch is a tool for editing Rapide architectures graphically. Boxes and lines may be drawn and edited
which corresponds to modules and connections in the architecture of a Rapide program.

Run the raparch program by typing:
% raparch &

A box will appear with several menus at the top, two sets of tool bars on the left, and a grid (called a
canvas) in the center. Canvas is equipped with a horizontal and a vertical rulers for convenient
positioning of objects. The architecture name is specified in the entry widget (labelled "Arch Name:") at
the bottom. There are two sets of tool bars on the lefthand side of a canvas. The first group is for

drawing and editing components and connections, such as "~ (create a component) or "(create a
connection) mode. The second group of tool bars is used to depict features of a component for its

behavior specifications. A tool bar in this group can only be activated in conjuction with) (select)
mode of the first tool bar group.

Reparch 0.9.9: msin.arch . MEE|
Fle Fdit Optims RAPIDF Help CLOS[I

in |0 1 2 3 4

NTSTERI FTERTETH RS FUTI FETRITTI ETEN [UYS FENL AT |11‘71|||n [TRTSITUITITI TRAR NI RTTH INTENTRE IAT!
I ' P . b f

‘ Lo i P !

| ; : v ; ;] : :

| i ' P ! | | : H ; |

i

Lo oo | i .
i !) i i i

.4

|
: ;
! i

T | : N B B B
oo N R

Illr\?lllll LL llll L lllll 11

SSIINI NTRINT

w

|
‘ |
BN | |

BERE i |
l (287, 152)-(3.1875i, 1.6875i)
- -

Arch tame: |[IVIA N

tu talule

[=lolelelx|z| <M < B|2|OE IR

Figure 2: Initial View of Raparch

System Architec’tui‘e (Picture)

The next step is to decide on an intial system architecture for your model. In this example we use a
single application program connected to a single resource. This architecture is depicted in Figure 3, and
we will now use raparch to construct a model of this architecture.

Application
Program

Resolirca

Figure 3: Single Application Program and Resource System Architecture.
Create an Application Program Component

To create an application program component, first enter the "create rectangular modules" mode by

clicking on the®™= jcon in the first tool bar group. Then create a box towards the top of the canvas for
the application program by positioning the cursor towards the top of the canvas where you want the top
left hand corner of the box to be. Then press down, drag and then release left mouse button (or
LeftButton) where you want the bottom right hand corner of the box to be. You will see a box labelled
"Module 1" appear.

Modify the module properties of application program component by (1) being in mode, and (2)
pressing down in the "Module 1" box on <Alt>-RightButton. An associated module properties window
will appear. Modify the "Module Name" to be "APPLICATION_PROGRAM" and modify the "Module
Label" to be "Application\nProgram." (The "\n" in the label means a newline) Then click on the OK
button.

Create a Resource Component

Similarly, create another component at the bottom of the canvas for the resource by: (1) being in
mode, and (2) press down, drag and release the LeftButton from the top left hand corner to the bottom

right hand corner.

Modify the modules properties of the resource component by (1) being in ¥# mode, and (2) pressing
down in the "Module 2" box on <Alt>-RightButton. Modify the "Module Name" to be "RESOURCE"
and modify the "Module Label" to be "Resource."” Optionally, you may change the color of the module
by typing in a color or using the "Choose..." button to select a color. Finally, click on OK.

Create a Path between the Components

To create a path between the application program and resource components, first enter the "connect

modules" mode by clicking on the button in tool bar with the L' icon. Press and release the
<Shift>-LeftButton on the application program component and then again on the resource component.
This will produce a double headed arrow between the components.

A double headed arrow creates a ‘‘two-way’’ connection between the components; by two-way we
mean that in the animation that you will produce later in the this tutorial, events will traverse in both
directions along this pathway. If you desire a ‘‘one-way’’ connection, which limits events to tranverse
along the pathway in only the direction of the arrow, then press and release the LeftButton on the source
component and <Shift>-LeftButton on the sink component.

Note: A pathway without either arrow heads defaults to one-way in the direction the pathway was
created. The direction of the arrow can be changed using a path properties dialogue box.

Modify the connection’s path properties by pressing and releasing <Alt>-RightButton anywhere along
the path while you are in the — 1 mode. For example, change the "Path Width" to 3. Finally, click on OK.
Optionally, you can modify the direction of arrow and connection mode by clicking the appropriate
radio button for the corresponding field. Like in a component properties window, you may change the

color of the path by typing in a color or using the "Choose..." button to select a color. A path name can
optinally be specified by typing in a particular name for the path as well.

Resizing and Repositioning

Optionally, you can move a component when you are in the "Selection tool" mode by pressing down on

the) icon, pressing down and dragging the component with LeftButton. Notice that when a component
is selected it turns blue.

Optionally, you can resize a component when you are in®# mode by pressing down and dragging an

edge of the box with <Shift>-RightButton.

Optionally, you can reposition a path when you are inLl mode by pressing down and dragging an end
of the path with <Shift>-RightButton.

Saving the Architecture

The architecture picture that we have built can be saved two ways. First, saved to a Rapide source file
that can be compiled and executed (saved in a file with ".rpd" extension by default). Second, saved to an
architecture file that can be used to animate the results of an execution (saved in a file with ".arch"
extension by default). To perform the latter, select the Save option of the File menu. This creates a file
named "main.arch” that contains a description of the architecture in a format that is understood by
raparch and raptor. You can save the description in file with another name by using the Save As option
of the File menu.

Note: If you save the file under a different name, be sure to use that name instead of main.arch
throughout the rest of the example! So far we are building a conceptual (initial) model of the system
architecture. We save this conceptual architecture in "main_concept.arch” by the Save As option of the
File menu. The file name is inherited from the name used in "Arch Name" field at the bottom of the
canvas. A default architecture name used is "main".

System Behavior

Rapide (and raparch) allows us to associate prototypical behaviors to our system. We can provide the
architecture with sementics, in other words, we are constructing a structural and behavioral model of
the system architecture.

Application Program Behavior

To associate a behavior with the application program component, first we create required features for the

component: (1) being in) mode in the first tool bar group, (2) clicking on the © icon in the second tool
bar group. Then create an out action feature over the boundary of application program component by
<Control>-MiddleButton (middle mouse button on 3-button mouse or both left and right mouse button
pressed simultaneously on 2-button mouse).)

Modify the properties of out action feature of application program component by (1) being in A mode ,
(2) being in © mode , and (3) pressing down in the "out action" feature on <Alt>-RightButton. Modify
the "Name" to be "Request". Similarily we create the other in action feature for application program
component and name it to be "Result”. Now, the structural interface of application program component
is established and the next step is to specify a behavior for application program component based on its
constituting in and out action features.

To describe a behavior for the application program component, you must be in®# mode and press
<Control>-RightButton on the application program component. This brings up a window that defines
the Rapide interface type associated with the application program component. At this point, raparch
should provide the structural interface constituents in "acitons and services" section of the type interface
window properly. (note: sometimes pressing <Control>-RightButton over components causes the
architecture description window open. This is a minor raparch bug to be fixed in the next release. If that
happens, ignore the architecture window by clicking the Cancel Button in the window.) Make sure that
actions and serives section contains:

action out Request():

action in Result();

These action declarations mean that the application program can generate "out”" Request events and

receive "in" Result events. These actions will be "visible" to the resource component as we shall see
later.

Click on the "Behavior..." button to describe the component’s behavior rules. It will bring up a new
window for the component behavior, labelled "APPLICATION_PROGRAM." There are "Behavioral
Declarations" and "Behavioral Rules" sections in the new window. Interfaces in Rapide can also include
behavioral declarations that we will initially leave alone. We will modify them later to enrich our -
behavioral specification. Notice the default action declaration that is special. This action’s associated
events communicate to raptor the "name" of the component that generated the event.

Modify the behavioral rules section to be:

start =>
animation_Iam ("APPLICATION_PROGRAM")
-> Request();:

This behavior rule waits until a start event is observed and reacts to it by generating two events: an
animation_Iam event and a Request event. The animation_Iam event is parameterized with the string
"APPLICATION_PROGRAM."

When you are finished making the modifications, click on the DONE button for behavioral rules
window and OK button for type interface window. The snapshot of this architecting process is depicted
in Figure 4.

Raparch 6.9.9: Mhomeparkiwin@5idipfexcrciscAl -~ RAPIDE Type Interface:

fle Edit Ontions BAPIDE Help Type Interface Name: [SPPLICA ION_PROGRAM

£l 2 Lals ,|,,,1|,,,,, du g1, rormal barameters: |
e A o .
e [¢ | iforna parometera for type inteeface conotricior)
3 ; . i Actions & Services:
O 4 1 ' aztion out Raquest(): =
- 34— 1 aztion in R2sult();
A S R |
T3 i
IE l | ’
-
- 'i ’ Behavior... oK Cance!
Al 3
E.I 34 AN AY I 'APPLICATION_PROGRAM" Bahavior:
e APPHICATHIN_PHOGRAM
ﬂ 3 Behiavivral Deciaraliuns:
ﬂ _; aztion an-ration_lam (nhame: st-ingl; _:
m] =
uf |43
E - |
.~ : N ‘]
9 - t i
E: I | /
3 | Behavioral Rulas:
1 i i start => animatior_Lar{'APILICATION_PIOCRAN") :
3 : -7 Request();;
64— :
3 i i
] . i i
4 -
4 L
P25 [R N
- ' i | l l Y
(254, 85)-{2.81: /

f--]
arch Hame: [VIAIY

Done Cancel

Figure 4: Application Program Component Features and its Behavioral Descriptions.

Resource Behavior

Similarily now we will associate a behavior with the resource component. First, we create required

features for the resource component, as explained in the above: (1) being in A mode , (2) clicking on
the ©icon , then create an out action ("Result") and an in action ("Request"). The structural interface of
resource component should be properly collected by raparch and be shown in type interface window.
Associated behavior can be specified in the same way as we described for the applicaiton program

component. Make sure that resource componet contains:

action in Request();

action out Result();
And modify the "behavioral rules" section in a behavior window to be:

start => animation_Iam("RESOURCE");;
Request () => Result();:

When you are finished making the modifications, click on the DONE button fo: behavioral rules
window and OK button for type interface window. The snapshot for RESOURCE component behavior
modification can be shown in a similar figure like Figure 4.

Create Pathes between the Features of Components

Modify connections for the system. First, delete a connection made between application program and
resource components by selecting the path between two components and using Delete option of the Edit
menu. Instead we will make a connection between two components, in terms of components’ features,
that is, "Request” and "Result" action pair of each component. To create a path between features of
components, first enter the "connect modules" mode by clicking on the button in the first tool bar group

with —Vicon. Press and release LeftButton on the out action "Request of Application Program" and then
again on the in action "Result of Resource" component.. This will produce a solid line between two
features. Modify the connection’s path properties by pressing and releasing <Alt>-RightButton

anywhere along the path while you are in the mode. For example, modify the "Path Width" to 3 and
connection mode to be "pipe" for now, then click on the OK button. You will see a change of line
pattern for a path, from a solid line to a dotted line. Details about connections will be discussed later in
this tutorial. Note: Since features of components already implies the direction of flow (e.g., out or in),
arrows may not be required for connections between features. A solid line represants a basic connection
and a dotted line for a pipe connection in Rapide. Figure 5 shows two pipe connections between
Request and Result action pairs of ApplicationProgram and Resource components in the architecture.

Raparch 0.9.9: fhome/park/wind5/dtp/exerciseimain.arch [[w] B3 |
File Edit Options RAPIDE Help CLOSE I

11|l||||u|]||||u|ll||ln|lnll||Mu|||1l||1|111l|||||||

-t

nN

ll]lllllllllllllllIlllllllllmnllllllillllllllllllllll]l

w

lolelolx|zl M |~ R E|D|O|H|>

{203, 163)=(2.25i, 1.68125i) 7

Path Properties N [=] E3
. Path Name: ;
Path Width: |3
Path Color: jblack Choose...
Connection
Result Result basic(solid)
asic(soli
4 none 4 none v
4 pipe(dotted)
v arrowhead v armrowhead
v agent(dashed)

Figure 5: Connections between Components based on their Features.

Main Architecture

Now we will associate code with the "main" architecture. In either *# or 7 mode and press
<Control>-RightButton on an empty portion of the canvas to bring up the Rapide architecture
description window. Once agiain raparch should be able to collect constituting components and

connections automatically. Make sure that main architecture window contains the following declarations

in "Decalarations in architecture" section. Note: Current raparch implementation may need a bit of

massages for Rapide source code generation in some cases. "Declarations in architecture” section shows
",on

APPLICATION_PROGRAM and RESOURCE declarations separated by ":". Names prior to ":
represent components’ identifiers in the architecture, and following APPLICATION_PROGRAM and

RESOURCE represents Rapide interface types.

APPLICATION_PROGRAM : APPLICATION_PROGRAM;
RESOURCE : RESOURCE;

“And make sure "Architectural Connections" section to be:

connect
APPLICATION_PROGRAM.Request () => RESOURCE.Request();
RESOURCE.Result () => APPLICATION_PROGRAM.Result():;

When you are finished making the modifications, if needed, and click on the OK button. The situation is
depicted in Figure 6.

MAIN - -

Raparch 0.99: homeiparkwind5'dtp/exercy -« RAPIDE Architecrue Description:

bile Edit Options BAPIDE H Architeciure Name: MAIN

Al |0 1 ? tormal Farameters: ()
§ ARTETEN lllll!lllllllllllllllll 2liny

Retum Type Interface: |

— Deriaratinns in archilecture:

APEI TCATTON_PROSRAM = APPI TCATTGN_PROGKAM: —
RESOURCE : RESOJRCE;

ﬁ 1]
|
T 23
DR
i | 4
YIREE _
Sk - ’
——J 3 frchitoctural Connections:
1‘ i connect s
_D_I] APFLICATION_PFOIRAM, Feyuesl () = RESOLRCE.Rzyuesi();
:, a 7] KESQURCE. Besult(C => APPLLCAILUN_PROuFAM, Resultl);
i ;
L
5
J . , [
= i
R i
|6 — v

(6,101)=(

[~
Arch Mampe: [MA IN

OK Cance!

Figure 6: Main Architecture Description

Generating the Rapide code

The architecture code that you have specified can be used to generate a Rapide program via the Generate
Rapide Code option of the RAPIDE menu. Enter "main.rpd" in the selection widget to create a file
named main.rpd.

When you are finished making the selection, click on the OK button. You will have produced a file
named main.rpd containing the following Rapide program.

TYPE APPLICATION_PROGRAM IS INTERFACE
action out Request();

action in Result () ;

BEHAVIOR
action animation_Iam(name: string);
BEGIN
start => animation_Iam("APPLICATION_PROGRAM") => Request();;
END;

TYPE RESQURCE IS INTERFACE
action in Request();
action out Result();

BEHAVIOR
action animation_Iam(name: string);
BEGIN
start => animation_Iam("RESOURCE");;
Request () => Result();;
END;

ARCHITECTURE MAIN() IS
APPLICATION_PROGRAM : APPLICATION_PROGRAM;

RESOURCE : RESOURCE;
CONNECT
APPLICATION_PROGRAM.Request () => RESOURCE.Request();
RESOURCE.Result () => APPLICATION_PROGRAM.Result();
END;

Also, save raparch’s state with the Save option of the File menu. This completes the construction of the
structural and behavioral model, in two files named "main.arch" and "main.rpd."

System Execution
The code saved in main.rpd can be compiled, executed and analyzed.
R.manager -- The Rapide Library Manager

To compile a Rapide program, a Rapide library must first be built. A Rapide library store information
about the predefined and user defined types and module.s. To create a library, type:

% r.mklib

Rpdc -- The Rapide Compiler

To compile the code in main.rpd to create an executable type:
% rpdc -M main -o main main.rpd

Compiling the program should take approximately 1 minute on a Sun Ultra. If you get errors during the
compilation, please check the associated sections of the code for typographical errors. Upon correcting
the error, don’t forget to save the program.

Execute the program by typing:
% main

This will produce a history of the executicn recorded in main.log.

System Analysis

There are several forms of analysis provided by the Rapide toolsuite. In particular, we will use raptor
and pov.

Raptor -- The Rapide Animator

To create a graphical animation of what happened during the execution, type:
% raptor -a main.arch main.log &

Pov -- The Rapide Partial Order (poset) Viewer

We can visualize what happened during the execution another way using the pov. The pov can create
several views of the events that were generated during the execution. In particular, a directed acyclic
graph can be generated whose arrows denote the causal (or more accurately the dependency)
relationship between the events. If an arrow goes from an event A to another event B then event B
depends on event A.

The pov is invoked with the log file name as its command line argument:
% pov main.log &

The pov starts initially with the view manager window which lists the computations (and views) that
have been loaded; at this point only one computation has been loaded, the main.log, and it has been
given the label "Computation 1." To examine the poset graphically, select Computation 1 and use the
poset viewer option of the View menu. Also, try the table viewer to represent the events in a tabular
form.

Planarviewer - Computation 1 [[O]>

File Select Layout Tools Help

START

¥ Name _|.Events|’ [
REQUEST LBy Chpitaton T 9

Y

REQUEST

k 4

RESULT

A

RESULT

Copyright 1989~ 1997, Board of Trustees, Stanford University

Selected 0 of 9 event(s)
Zoom: 4} [

M| Orderby: ww |

Copyright 1989-1997, Board of Trustees, Stanford University

Figure 6: Pov’s PlanarViewer of main Execution.

If you are running a secure X server, you can coordinate the animation’s displaying of the events with
modification of the pov’s poset viewer’s coloring of the events. To coordinate the animation with the
visualization, you may drag and drop the computation from the pov to raptor. One way to do this is to
click and hold RightButton on "Computation 1" in the view manager window of the pov and drag the
computation over to the raptor window. When the dragged computation turns green, you may release the

button. If the computation doesn’t turn green, you are probably not running a secure X server.

REFERENCES:

1. NIST 4D/RCS Reference Model Architecture:
www.itl.nist.gov/div97/projects/projadl.htm

2. B2 Avionics Modeling and Analysis with Rapide (JSF)
www.northgum.com/ng_review/review04 03.html

3. MISSI Reference Architecture -- From Prose to Precise Specification
by Sigurd Meldal and David C. Luckham

4. Towards and Abstraction Hierarchy for CAETI Architectures
by D. C. Luckham, F. Belz and J. Vera
CSL Stanford University, 1997 CSL-TR-97-727

5. Complex Event Processing in Distributed Systems
by D. C. Luckham and B. Frasca
CSL Stanford University, 1998 CSL-TR-98-754

